Use Gaussian Quadrature with “enough” sample points to integrate the following functions to a satisfactory accuracy:

\[I_1 = \int_0^4 e^{-x} \, dx = 0.98168436, \]
\[I_2 = \int_{-3}^3 e^{-\frac{1}{2}x^2} \, dx = 2.4998609. \]

Your program should include:

(a) A prompt for the function as the interactive input and the interval of integration and the number of sample points, \(M \), to be used.

(b) A subprogram to generate the Gaussian Quadrature Abscissas and Weighting factors. The abscissas are the roots of the \(M \)-th order Legendre Polynomial which could be generated using the recurrence relationship:

\[P_{n+1}(x) = \frac{(2n + 1)x}{n+1}P_n(x) - \frac{n}{n+1}P_{n-1}(x) \]

and the starting polynomials \(P_0(x) = 1 \) and \(P_1(x) = x \). The weighting factor, \(w_i \), can be determined using its corresponding abscissa value as

\[w_i = \frac{2(1 - x_i^2)}{(n+1)^2[P_{n+1}(x_i)]^2} \]

(c) Since the standard Gaussian Quadrature is derived for the interval \([-1, 1]\), use a change of variable to perform the integral using

\[\int_a^b f(x) \, dx \approx \frac{b-a}{2} \sum_{i=1}^M w_i f \left(\frac{b-a}{2} x_i + \frac{b+a}{2} \right). \]

(d) Experiment with \(M \) to get accurate results for the integrals. For your reference, using Simpson’s Rule it required 65 sample points for \(I_1 \) and 127 sample points for \(I_2 \). Gaussian Quadrature should require about half as many. Keep in mind that matlab accuracy will break down when \(M \) is greater 40 or so. Mathematica has the capability to do higher order formulas.

Email the diary file which includes the main program and functions and runstream to ce108@usc.edu.