1) Find the integral \(\int e^{3x} \cos(2x) \, dx \).

2) Find the integral \(\int \tan^{-1}(1 + x) \, dx \).

3) Find the derivative of
\[
\frac{d}{dx} \left(\frac{y \cos^3 x}{1 + \sin^2 x} \right).
\]

4) The Gregory Coefficients, \(C_n \), are used to expand the reciprocal logarithmic function,
\[
\frac{z}{\ln(1 - z)} = \sum_{n=1}^{\infty} C_n z^n ; \quad |z| < 1 .
\]

It is given that \(C_0 = -1 \), and the later coefficients can be determined by the recurrence relationship
\[
C_n = -\sum_{k=0}^{n-1} \frac{C_k}{n + 1 - k}.
\]

Find the coefficients in fractional form, \(C_i \), \(i = 1 \) to 12. (Hint: \(C_1 = \frac{1}{2}, C_2 = \frac{1}{12}, C_3 = \frac{1}{24}, C_4 = \frac{19}{720}, C_5 = \frac{9}{100}, C_6 = \frac{863}{60480} \).)

5) Write \(\pi \) to 40 places.

6) Write \(e \) to 45 places.

7) Write the eleven binomial coefficient for \(\binom{10}{0} \) to \(\binom{10}{10} \).
(8) Given $P_0(x) = 1$ and $P_1(x) = x$, the higher order Legendre Polynomials can be obtained by the relationship,

$$P_{n+1}(x) = \frac{(2n + 1)x}{(n + 1)} P_n(x) - \frac{n}{(n + 1)} P_{n-1}(x)$$

For example,

let $n = 1$: \[P_2(x) = \frac{3}{2} x(x) - \frac{1}{2} (1) = \frac{1}{2} (3x^2 - 1) \]

let $n = 2$: \[P_3(x) = \frac{5}{3} x \left(\frac{1}{2} \right) (3x^2 - 1) - \frac{2}{3} (x) = \frac{1}{2} (5x^3 - 3x) \]

Find all Legendre Polynomials from $P_4(x)$ to $P_6(x)$.

(9) Find the Fourier Sine Expansion of a function $f(x)$ in the form,

$$f(x) = \sum_{n=1}^{N} a_n \sin(n\pi x),$$

in which the Fourier Coefficient for the interval $x=[0,1]$ is evaluated as

$$a_n = 2 \int_{0}^{1} f(x) \sin(n\pi x) \, dx.$$

Expand $f(x) = x(x^2 + x - 2)$ in a Fourier Sine Series.

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>$N = 3$</th>
<th>$N = 7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.125</td>
<td>-0.2324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.250</td>
<td>-0.4219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.375</td>
<td>-0.5566</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.500</td>
<td>-0.6250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.625</td>
<td>-0.6152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.750</td>
<td>-0.5156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.875</td>
<td>-0.3145</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>