Richardson Extrapolation

Interpolation is to estimate a value between a given set of known values. Extrapolation is to use known values to project a value outside of the intended range of the previous values. Using the concept of Richardson Extrapolation, very higher order integration can be achieved using only a series of values from Trapezoidal Rule. Similarly, accurate values of derivatives could be obtained using low-order central difference derivatives.

Generally, when an approximate formula is developed, for example, the Trapezoidal Rule, the formula could be written as

\[\int_a^b f(x) \, dx \approx \frac{h}{2} f(a) + \frac{h}{2} f(b), \]

in which \(h \) is the increment between the sample points. The approximation, however, could be replaced by an equation as

\[\int_a^b f(x) \, dx = \frac{h}{2} f(a) + \frac{h}{2} f(b) + O(h^2). \]

The expression \(O(h^2) \) is an estimate to the error resulting from the approximation, it means the “order” of the error is of \(h^2 \). If the increment is 1/2 as large, then the error should be of the order 1/4 times smaller. Simpson’s Rule has an error term of \(O(h^4) \), therefore, if the increment is 1/2 as large, the error should be of the order 1/16 times smaller. Bode’s Rule has an error of order \((h^6) \).

Consider an equally spaced approximate integration formula of the form:

\[\int_a^b f(x) \, dx = \sum_i w_i f(x_i) + O(h^n). \]

Richardson extrapolation assumes the term \(O(h^n) \) could written as \(Ch^n \), in which \(C \) is a constant. The higher order terms of \(h \) are ignored. Rewrite now

\[A_h = \sum_i w_i f(x_i), \]

and

\[A_0 = \int_a^b f(x) \, dx. \]

\(A_h \) indicates the solution was obtained using the increment \(h \) and \(A_0 \) indicates the solution was obtained using an infinitesimally small \(h \) and that it could be considered to be the exact solution. The Richardson Extrapolation approximation could then be written as

\[A_0 = A_h + Ch^n. \]

If another approximate solution could be obtained using an increment of 2\(h \), then \(A_0 \) could be estimated as

\[A_0 = A_{2h} + C(2h)^n. \]
The value of C can be obtained by subtracting the two above algebraic equations as

$$C = \frac{A_h - A_{2h}}{(2^n - 1)h^n}$$

Using Richardson Extrapolation, the best value can be extrapolated to be

$$A_0 = A_h + \frac{1}{(2^n - 1)}(A_h - A_{2h})$$

Richardson Extrapolation for Trapezoidal Rule

With an order term of $O(h^2)$, the extrapolation for a better solution is

$$A_0 = A_h + \frac{1}{3}(A_h - A_{2h})$$

Richardson Extrapolation for Simpson’s Rule

With an order term of $O(h^4)$, the extrapolation for a better solution is

$$A_0 = A_h + \frac{1}{15}(A_h - A_{2h})$$

Richardson Extrapolation for Bode’s Rule

With an order term of $O(h^6)$, the extrapolation for a better solution is

$$A_0 = A_h + \frac{1}{63}(A_h - A_{2h})$$

Some Applications of Richardson Extrapolation

Trapezoidal Rule

Using 3 sample points, x_1, x_2, x_3 and an increment of h, the estimate for A_h is

$$A_h = \frac{h}{2} f(x_1) + h f(x_2) + \frac{h}{2} f(x_3)$$

Using only 2 sample points, x_1, x_3 and an increment of $2h$, the estimate for A_{2h} is

$$A_{2h} = \frac{(2h)}{2} f(x_1) + \frac{(2h)}{2} f(x_3)$$
Using the Richardson Extrapolation formula for Trapezoidal Rule:

\[A_0 = A_h + \frac{1}{3} (A_h - A_{2h}) = \frac{4}{3} A_h - \frac{1}{3} A_{2h}, \]

The best estimate for \(A_0 \) is

\[A_0 = \frac{4}{3} \left(\frac{1}{2} f(x_1) + hf(x_2) + \frac{1}{2} f(x_3) \right) - \frac{1}{3} \left(\frac{(2h)}{2} f(x_1) + \frac{(2h)}{2} f(x_3) \right) \]

\[= \frac{h}{3} f(x_1) + \frac{4h}{3} f(x_2) + \frac{h}{3} f(x_3). \]

The result is the Simpson’s Rule. Amazing!

Simpson’s Rule

Using 5 sample points, \(x_1, x_2, x_3, x_4, x_5 \), and an increment of \(h \), the estimate for \(A_h \) is

\[A_h = \frac{h}{3} f(x_1) + \frac{4h}{3} h f(x_2) + \frac{2h}{3} h f(x_3) + \frac{4h}{3} h f(x_4) + \frac{h}{3} f(x_5). \]

Using only 3 sample points, the minimum, \(x_1, x_3, x_5 \) and an increment of \(2h \), the estimate for \(A_{2h} \) is

\[A_{2h} = \frac{2h}{3} f(x_1) + \frac{4(2h)}{3} h f(x_3) + \frac{2h}{3} f(x_5). \]

Using the Richardson Extrapolation formula for Simpson’s Rule:

\[A_0 = A_h + \frac{1}{15} (A_h - A_{2h}) = \frac{16}{15} A_h - \frac{1}{15} A_{2h}, \]

The best estimate for \(A_0 \) is

\[A_0 = \frac{16}{15} \left(\frac{h}{3} f(x_1) + \frac{4h}{3} h f(x_2) + \frac{2h}{3} h f(x_3) + \frac{4h}{3} h f(x_4) + \frac{h}{3} f(x_5) \right) \]

\[- \frac{1}{15} \left(\frac{2h}{3} f(x_1) + \frac{4(2h)}{3} h f(x_3) + \frac{2h}{3} f(x_5) \right) \]

\[= \frac{14h}{45} f(x_1) + \frac{64h}{45} f(x_2) + \frac{24h}{45} f(x_3) + \frac{64h}{45} f(x_4) + \frac{14h}{45} f(x_5). \]

The result is the Bode’s Rule. Amazing!

Central Difference, First Derivative

Using 3 sample points, \(x_-, x_0, x_1 \) and an increment of \(h \), the estimate for \(A_h \), central difference for first derivative, is

\[A_h = \frac{f_1 - f_{-1}}{2h}. \]
Using 3 sample points, but a wider interval, \(x_{-2}, x_0, x_2 \) and an increment of \(2h \), the estimate for \(A_{2h} \) is

\[
A_{2h} = \frac{f_2 - f_{-2}}{2(2h)} .
\]

Using the Richardson Extrapolation formula for \(O(h^2) \):

\[
A_0 = A_h + \frac{1}{3} (A_h - A_{2h}) = \frac{4}{3} A_h - \frac{1}{3} A_{2h} ,
\]

The best estimate for \(A_0 \) is

\[
A_0 = \frac{4}{3} \left(\frac{f_1 - f_{-1}}{2h} \right) - \frac{1}{3} \left(\frac{f_2 - f_{-2}}{2(2h)} \right) = \frac{-f_2 + 8f_1 - 8f_{-1} + f_{-2}}{12h} .
\]

The result is that of a 4-th order polynomial fitted to 5 sample points, at \(x_{-2}, x_{-1}, x_0, x_1, x_2 \).

Central Difference, Second Derivative

Using 3 sample points, \(x_{-1}, x_0, x_1 \) and an increment of \(h \), the estimate for \(A_h \), central difference for second derivative, is

\[
A_h = \frac{f_1 - 2f_0 + f_{-1}}{h^2} .
\]

Using 3 sample points, but a wider interval, \(x_{-2}, x_0, x_2 \) and an increment of \(2h \), the estimate for \(A_{2h} \) is

\[
A_{2h} = \frac{f_2 - 2f_0 + f_{-2}}{(2h)^2} .
\]

Using the Richardson Extrapolation formula for \(O(h^2) \):

\[
A_0 = A_h + \frac{1}{3} (A_h - A_{2h}) = \frac{4}{3} A_h - \frac{1}{3} A_{2h} ,
\]

The best estimate for \(A_0 \) is

\[
A_0 = \frac{4}{3} \left(\frac{f_1 - 2f_0 + f_{-1}}{h^2} \right) - \frac{1}{3} \left(\frac{f_2 - 2f_0 + f_{-2}}{4h^2} \right) = \frac{-f_2 + 16f_1 - 30f_0 + 16f_{-1} - f_{-2}}{12h^2} .
\]

The result is that of a 4-th order polynomial fitted to 5 sample points, at \(x_{-2}, x_{-1}, x_0, x_1, x_2 \).