Problem #1:

![Circuit Diagram]

\[
I_1 = \frac{V_1}{R_i} - g_2 V_2 = \frac{V_1}{R_i} + \frac{g_1 g_2 R_i V_1}{1 + sR_0 C}
\]

\[
Y_{in}(s) = \frac{I_1}{V_1} = \frac{1}{R_i} + \frac{g_1 g_2 R_0}{1 + sR_0 C}
\]

Ans. #1

Problem #2:

\[
Y_{in}(s) = \frac{1}{R_i} + \frac{1}{R_2 + sL} = \frac{1}{R_i} + \frac{1}{1 + sL/R_2}
\]

\[
P_1 = R_i, \quad \frac{L}{R_2} = R_0 C
\]

\[
P_2 = \frac{1}{g_1 g_2 R_0}, \quad L = R_2 R_0 C = \frac{C}{g_1 g_2}
\]

Ans. #2

Problem #3:

(a) For \(R_i, R_0 \to \infty \), \[Y_{in}(s) = \frac{g_1 g_2}{sC} \]

Since the admittance of an inductor is \(Y(s) = \frac{1}{sL} \), the gyrator ideally yields an inductance of value \(C/g_1 g_2 \).
(b). With \(R_1, R_0 \to \infty \), \(R_1 = \infty \); \(R_2 = 0 \), meaning that the passive model is a simple inductance. \(\text{Ans.} \#56 \)

(c). For a series RL circuit, \(Z_{in} = R + j \omega L = R + j \omega X \), where \(X > 0 \), assuming an RL circuit:

\[
\begin{align*}
Y_{in}(j\omega) &= \frac{1}{R_i} + \frac{j\omega g_2 R_0}{1 + j\omega R_0 C} = \frac{1 + j\omega R_0 C + j\omega g_2 R_0 R_0}{R_i (1 + j\omega R_0 C)} \\
Z_{in}(j\omega) &= \frac{\frac{R_i}{(1 + j\omega R_0 C)} (1 + j\omega R_0 C)}{(1 + j\omega g_2 R_0 R_0) + j\omega R_0 C} \\
\Rightarrow Z_{in}(j\omega) &= \frac{\frac{R_i}{1 + j\omega R_0 C} (1 + j\omega R_0 C)}{1 + j\omega R_0 C} = \frac{\frac{R_i}{1 + j\omega R_0 C} (1 + j\omega R_0 C)}{1 + (\frac{\omega R_0 C}{R_i})^2} = \frac{\frac{R_i}{1 + j\omega R_0 C} (1 + j\omega R_0 C)}{1 + (\omega R_0 C)^2} = R_{in}(w) + jX_{in}(w)
\end{align*}
\]

\[
\begin{align*}
\Omega(w) &= \frac{\omega R_0 C (1 - \frac{1}{K})}{1 + (\frac{\omega R_0 C}{K})^2} = \frac{\omega R_0 C (K - 1)}{K + (\omega R_0 C)^2} = \frac{\omega g_1 g_2 R_0 R_0}{1 + g_1 g_2 R_0 R_0 + (\omega Y)^2}
\end{align*}
\]

\[
\begin{align*}
\Omega(w) &= \frac{\omega R_0 C (1 - \frac{1}{K})}{1 + (\frac{\omega R_0 C}{K})^2} \quad \Rightarrow \quad \Omega(0) = \Omega(\infty) = 0
\end{align*}
\]

\[
\begin{align*}
\lim_{w \to 0} \Omega(w) &= \omega R_0 C (K - 1) = \omega g_1 g_2 R_0 R_0^2 C \\
\lim_{w \to \infty} \Omega(w) &= \frac{K - 1}{\omega Y} = \frac{g_1 g_2 R_0}{\omega C} \quad \text{Ans.} \#53C
\end{align*}
\]
\(L = \frac{C}{g_1 g_2} \Rightarrow g_1 g_2 = \frac{C}{L} = (1)(10^{-8}) \text{ mho}^2 \)

\(R_i = R_o = 10 \text{ k}\Omega \Rightarrow K = 1 + g_1 g_2 R_i R_o = (100)(10^8) \)

\(T = R_o C = 100 \text{ nsec} \)

\[Q(w) = \frac{wY(K-1)}{K + (wY)^2} \]

\[Q(x) = \frac{(K-1)x}{K + x^2} \]

\[\frac{dQ(x)}{dx} = \frac{(K+x^2)(K-1) - (K-1)x(2x)}{(K+x^2)^2} = 0 \]

\[(K+x^2)(K-1) = 2x^2 (K < 1) \]

\[x^2 = K \]

\[x = wY = \sqrt{K} \Rightarrow w = 2\pi(503.3 \text{ MHz}) \]

\[Q_{\text{max}} = \frac{\sqrt{K}(K-1)}{2K} = \frac{K-1}{2\sqrt{K}} = 158.1 \] (See Plot, Page 8)

Problem #4:

\[\frac{V_0}{R_i} + S g_2 (V_0 - V_x) = 0 \Rightarrow V_x = \frac{(1 + S R_i C_2)V_0}{S R_i C_2} \]
\[S(C_1)(V_x - V_0) + S(C_2)(V_x - V_0) + \frac{V_x - V_0}{R_2} = 0 \]

\[V_x \left\{ 1 + SR_2C_1 + SR_2C_2 \right\} - V_0 \left\{ 1 + SR_2C_2 \right\} = SR_2C_1 V_x \]

\[\frac{1 + SR_2C_2}{SR_2C_2} \left\{ (1 + SR_2C_1 + SR_2C_2) - 1 - SR_2C_2 \right\} V_0 = SR_2C_1 V_x \]

\[(1 + SR_2C_2)(1 + SR_2C_1 + SR_2C_2) - SR_2C_1 - S^2 R_1 R_2 C_2) V_0 = SR_2C_1 V_x \]

\[H(s) = \frac{V_0}{V} = \frac{S^2 R_1 R_2 C_1 C_2}{1 + SR_2C_1 + SR_2C_2 + S^2 R_1 R_2 C_2} \]

\[= \frac{S^2 R_1 R_2 C_1 C_2}{1 + SR_2(C_1 + C_2) + S^2 R_1 R_2 C_2} \]

\[\Rightarrow \text{Highpass Filter} \]

\[(b). \quad \omega_N^2 = \frac{1}{R_1 R_2 C_1 C_2} \Rightarrow \omega_N = \sqrt{\frac{1}{R_1 R_2 C_1 C_2}} \]

\[\frac{2\rho}{\omega_N} = R_2(C_1 + C_2) \Rightarrow \rho = \frac{R_2(C_1 + C_2)}{2} \frac{1}{\sqrt{R_1 R_2 C_1 C_2}} \]

\[\rho = \frac{1}{2 \sqrt{R_2}} \left(\frac{C_1 + C_2}{C_1 C_2} \right) \]

\[(c). \quad H(j\omega) = -\frac{(\omega/\omega_N)^2}{1 - (\omega/\omega_N)^2 + j2\rho(\omega/\omega_N)} \]
\[H(j\omega_n) = -\frac{1}{j2p} \]

With \(p = \frac{1}{\sqrt{2}} \) \(\Rightarrow \) \(H(j\omega_n) = -\frac{1}{j\frac{1}{\sqrt{2}}} \) \(\Rightarrow \) \(|H(j\omega)| = \frac{1}{1/\sqrt{2}} \)

Since the infinite frequency gain is one and since the gain at frequency \(\omega_n \) is down from this infinite frequency gain by \(\frac{1}{\sqrt{2}} \) (3-dB), \(\omega_n \) is the low 3-dB cutoff frequency when \(p = 1/\sqrt{2} \)

\[\text{Ans.: #40} \]

(d). Let \(x = \omega/\omega_n = \text{normalized frequency} \)

\[H(jx) = -\frac{x^2}{1-x^2 + j2px} \] \(\Rightarrow \) \[|H(jx)| = \frac{x^2}{(1-x^2)^2 + (2px)^2} \]

\[\Phi_H(x) = 180^\circ - \tan^{-1}\left(\frac{2px}{1-x^2}\right) \]

See plots, pages 11-12. Note that for small \(p \), the magnitude response displays pronounced peaking in the circuit response. Small \(p \) also provides a lower low cutoff frequency. For large \(p \), no peaking is evidenced, but the low cutoff frequency is larger. As a general design guideline, \(p = 1/\sqrt{2} \) is desirable in that it delivers the flattest possible magnitude response within the constraint of no peaking. The effect of \(p \) on the phase response is less dramatic, but observe that for small \(p \), the sensitivity of phase angle is greater than it is for large \(p \), particularly in the neighborhood of unity normalized frequency, i.e., around \(\omega = \omega_n \).
Problem #5:

(a) \(\frac{1}{j \omega C} \frac{1}{j \omega L} = \frac{\frac{R}{1+j \omega RC}}{1+j \omega RC} \cdot \frac{\frac{1}{R+j \omega L+(j \omega)^2 RC}}{R+j \omega L+(j \omega)^2 RC} \)

\[= \frac{\frac{R}{1+j \omega L+(j \omega)^2 RC}}{1+j \omega L+(j \omega)^2 RC} \cdot \frac{R}{1+j \omega L(w L C - \frac{1}{w})} \]

Let: \(\omega_0 = \frac{1}{\sqrt{LC}} \); \(\omega_0 = \frac{R}{w_0 L} \)

\[\Rightarrow \frac{1}{j \omega C} \frac{1}{j \omega L} = \frac{R}{1+j \omega_0(\frac{w}{w_0} - \frac{w_0}{w})} \]

\[\Rightarrow H(j \omega) = \frac{V_o}{V_i} = \frac{\frac{V_o}{V_i}}{1+j \omega_0(\frac{w}{w_0} - \frac{w_0}{w})} \]

\(H(j \omega) = 0 \)
\(H(j \omega) = 0 \)
\(H_{\text{max}} = \frac{GmR e^{-j \omega}}{w = \omega_0 = 1/\sqrt{LC}} \)

\(\text{Ans.} \)

(b) \(|H(j \omega)| = |H(j \omega)| = \frac{GmR \omega_{\text{max}}}{\sqrt{2}} = \frac{H_{\text{max}}}{\sqrt{2}} \)

\(\omega_0 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) = 1, \text{ Assuming } \omega_H > \omega_0 \)
\(\omega_0 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega_L} \right) = -1, \text{ Assuming } \omega_L < \omega_0 \)
\[Q_0 (w_h^2 - w_0^2) = w_0 w_h \]
\[Q_0 w_h^2 - w_0 w_h - Q_0 w_0^2 = 0 \]
\[w_h = \frac{w_0 \pm \sqrt{w_0^2 + 4 Q_0^2 w_0^2}}{2 Q_0} = \frac{w_0}{2 Q_0} \left[1 \pm \sqrt{1 + 4 Q_0^2} \right] \]

\[Q_0 (w_L^2 - w_0^2) = -w_0 w_L \]
\[Q_0 w_L^2 + w_0 w_L - Q_0 w_0^2 = 0 \]
\[w_L = \frac{-w_0 \pm \sqrt{w_0^2 + 4 Q_0^2 w_0^2}}{2 Q_0} = \frac{w_0}{2 Q_0} \left[-1 \pm \sqrt{1 + 4 Q_0^2} \right] \]

\[B = w_h - w_L = \frac{w_0}{Q_0} = \frac{w_0^2 L}{R} = \frac{1}{RC} \quad \text{ANS. } \frac{1}{5 b} \]

(c) \[Q = \frac{w_0}{B} = \frac{w_0}{w_0^2 L} = \frac{R}{w_0} = R \sqrt{\frac{L}{C}} \]

\[H_N(j\omega) = \frac{1}{1 + j Q (X - \frac{1}{X})} \]

\[|H_N(j\omega)| = \frac{1}{\sqrt{1 + Q^2 (X - \frac{1}{X})^2}} \]
\[\Phi(X) = -\tan^{-1} Q (X - \frac{1}{X}) \]

Let \(H_N = \frac{H(j\omega)}{H_{max}} \) be Normalized Gain
\[X = \frac{\omega}{w_0} \text{ Normalized Frequency} \]

\[H_N(j\omega) = \frac{1}{1 + j Q (X - \frac{1}{X})} \]

See plots, pages 15, 16

The larger \(Q \) is, the more peaked is the gain at zero freq, i.e., the gain is sharply defined in the neighborhood of \(w_0 \).