Radio

Radio link design
Overview

• VDL Mode 4
• A (radio) communication system
• The radio channel
• Channel access
VDL Mode 4 Ground station

VHF Transceiver

Communication Processor

GNSS reference receiver
VDL Mode 4 Transponder

VHF Transceiver

Communication Processor

GNSS receiver
VDL Mode 4 Superframe - 1 minute - 4,500 slots = 75 slots/s

Slot 1 13.33 ms Current superframe Slot 4500

Slot 4501 Current superframe + 1 Slot 9000
VDL-4 Summary

- Avionics data link
 - Communication, navigation and surveillance
- Based upon STDMA (By Håkan Lans)
- 108-137 MHz, 25 kHz channels
- 19200 bit/s, FSK
- ≈10 W Tx power
- 200 nmi range (≈370 km)
Communication layers

<table>
<thead>
<tr>
<th>OSI</th>
<th>LAN examples</th>
<th>VDL4</th>
</tr>
</thead>
<tbody>
<tr>
<td>User interface</td>
<td>Application</td>
<td>Web browser...</td>
</tr>
<tr>
<td>Transform /translate</td>
<td>Presentation</td>
<td>HTTP, FTP</td>
</tr>
<tr>
<td>Process</td>
<td>Session</td>
<td>TCP</td>
</tr>
<tr>
<td>Data delivery</td>
<td>Transport</td>
<td>IP</td>
</tr>
<tr>
<td>Packets</td>
<td>Network</td>
<td>Ethernet, ATM</td>
</tr>
<tr>
<td>Frames</td>
<td>Data link</td>
<td>Twisted pair</td>
</tr>
<tr>
<td>Raw bits</td>
<td>Physical</td>
<td>VHF channel</td>
</tr>
</tbody>
</table>

Notes:
- ADS-B: Automatic dependent surveillance broadcast
- TIS-B: Traffic information service broadcast
- DLS: Digital local service
- STDMA: Standard data mode automatic
Power level units

- dB: Logarithmic level ratio:
 - 3 dB ↔ double power
 - 10 dB ↔ 10 * power
- dBm: Power level, 0 dBm = 1 mW
- dBi: Antenna gain, 0 dBi => isotropic ant
- dBc: Power level, 0 dBc => carrier level
- dBμV: Voltage level, 0 dBμV = 1 μV
- dBμV/m: Field strength
The radio spectrum

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLF</td>
<td>Very Low Frequency</td>
</tr>
<tr>
<td>LF</td>
<td>Low Frequency</td>
</tr>
<tr>
<td>MF</td>
<td>Medium Frequency</td>
</tr>
<tr>
<td>HF</td>
<td>High Frequency</td>
</tr>
<tr>
<td>VHF</td>
<td>Very High Frequency</td>
</tr>
<tr>
<td>UHF</td>
<td>Ultra High Frequency</td>
</tr>
<tr>
<td>SHF</td>
<td>Super High Frequency</td>
</tr>
<tr>
<td>EHF</td>
<td>Extremely High Frequency</td>
</tr>
<tr>
<td>Infrared</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td></td>
</tr>
<tr>
<td>Ultraviolet</td>
<td></td>
</tr>
<tr>
<td>Gamma-ray</td>
<td></td>
</tr>
<tr>
<td>Cosmic-ray</td>
<td></td>
</tr>
<tr>
<td>Infra-sonics</td>
<td></td>
</tr>
<tr>
<td>Sonics</td>
<td></td>
</tr>
<tr>
<td>Ultra-sonics</td>
<td></td>
</tr>
<tr>
<td>Microwaves</td>
<td></td>
</tr>
<tr>
<td>Infrasonic</td>
<td></td>
</tr>
<tr>
<td>Sonic</td>
<td></td>
</tr>
<tr>
<td>Ultra-sonic</td>
<td></td>
</tr>
<tr>
<td>Microwaves</td>
<td></td>
</tr>
<tr>
<td>Infrared</td>
<td></td>
</tr>
<tr>
<td>Visible</td>
<td></td>
</tr>
<tr>
<td>Ultraviolet</td>
<td></td>
</tr>
<tr>
<td>Gamma-ray</td>
<td></td>
</tr>
<tr>
<td>Cosmic-ray</td>
<td></td>
</tr>
</tbody>
</table>

3 kHz to 300 GHz

FM radio | VDL-4 | GSM 900 | Bluetooth | NG W-LAN |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100 MHz</td>
<td></td>
<td>1 GHz</td>
<td>2.45±0.5</td>
<td>5.8±0.75</td>
</tr>
<tr>
<td>1160 * 25 kHz channels</td>
<td>137 MHz</td>
<td>Spectrum mask</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spectrum mask:

-1st: -45 dBm
-2nd: -28 dBm
-4th: -38 dBm
-32nd: -53 dBm
Frequency issues

• Attenuation $\sim f^2$ \(\frac{P_r}{P_t} = \frac{G_r G_t \lambda^2}{(4\pi r)^2}\)
 – 81 times more power required at 900MHz for same received power as at 100MHz

• Antenna size $\sim f$
 – Typically 70 cm for FM $\lambda/4$ antenna (100 Mhz)
 – ≈ 8 cm for 900 MHz $\lambda/4$ antenna
 – Efficient (VHF) antenna can have ≈ 0 dBi (typical aircraft antenna ≈ -4 dBi)
Noise

- Thermal background noise
 - -174 dBm/Hz @ 290K (0 dB NF)
- Sky temperature
 - Significant (NF ≈ 5-10 dB) at low frequencies (< 200 MHz)
- Other systems (man made)
 - Impulse and continuous signal (CW)
- Noise figure \(NF = 10 \log(1 + T/290) \)
 Temperature \(T \) in Kelvin
Noise

Typical sky temperature

Thermal noise floor (-174 dBm/Hz @ 290K)
Noise

• CCI: Co-channel interference
 – In-band interference
 – Typically 6-20 dB CCI rejection
 – Interference from other similar units using same channel
 – Low CCI ratio => more efficient frequency reuse
 – 10 dB CCI protection will be required for VDL-4
Digital modulation

- Symbol: Bit or collection of bits
- Modifying parameters of a carrier
 - Amplitude (ASK), 1 bit/symbol
 - Frequency (FSK), 1 bit/symbol
 - Constant envelope (no amplitude variations) can be implemented
 - Phase (PSK), 1-3 bit/symbol
 - Amplitude and phase (QAM), 4-8 bit/symbol
 - Multi-carrier (OFDM), 50-16000 bit/symbol
Metrics

• Power efficiency
 – Signal power to achieve a particular BER for a given modulation scheme
 – Signal energy per bit / noise spectral density: E_b / N_0

• Bandwidth (spectral) efficiency
 – Possible data rate for given bandwidth
 – Data rate typically 0.5-4 bit/s/Hz
 – Shannon limit: $C = B \times \log_2(1+s/n)$
Constellation: Vector notation

- Representing amplitude and phase using polar coordinates
 - $I = M\cos\theta$, M: Amplitude, θ: Phase
 - $Q = M\sin\theta$
Using the vector notation

- "Detectability"
- Crest factor (amplitude variations)
- Power and bandwidth efficiency

Transitions: Indicates amplitude variations

Distance ~ detectability

Peak power

Log2(number of signals) = bits/symbol \sim bits/s/Hz
Transceiver structure
Analog design issues

• Filters
 – Attenuation
 – Phase linearity

• Mixers and amplifiers
 – Dynamic range
 • Spurious products
 • Noise

• Oscillators
 – Phase noise
Implementation issues

• For analog components:
 – Performance costs:
 • Money
 • Size
 • Power
Constant envelope modulation

- FSK, MSK (h=0.5)
- Features:
 - Frequency reuse (CCI)
 - Power efficient
 - Non-linear transmitter
Phase modulation

- D8PSK, QPSK
- Features
 - High throughput (1.5-3 bit/s/Hz)
Phase/Amplitude modulation

- 16 QAM, 64 QAM, 256 QAM
- Features
 - High throughput (3-8 bit/s/Hz)

16 QAM

- Microwave links
Multi-carrier modulation

- OFDM, COFDM, MC-CDMA
- Multiple orthogonal carriers, typically PSK or QAM modulated
- Coding in the frequency dimension
- For N carriers, symbol time increases by N
 - Less ISI (intersymbol interference)
 - Less sensitive to multipath interference
DS-CDMA modulation

- Direct sequence CDMA
 - Spreading gain \(W/R \)
 - Rake receiver ("ISI-free")

\[
W/R = 10 \log(1.2288 \text{ MHz}/9600\text{Hz}) = 21 \text{ dB} \quad \text{(IS-95 CDMA)}
\]

\(W = \) Spreading bandwidth, \(R = \) data rate
Performance

• Spectrum use

Error rates

Typ. ≈ 1-1.5 * symbol rate

FEC gain ≈ 2-10 dB
Link budget

- Antenna gain: -2dBi (Tx and Rx)
- Cable loss: 3dB (Tx and RX)
- Thermal noise: -174dBm/Hz
- Sky temp: NF~4dB
- Man-made noise 16dB ENR
- \(U = 4.359 \times 10^6 \times Er \times \sqrt{GR} / f \)
- \(U = \sqrt{PR} \)
- Bandwidth: 25 kHz = 44 dB
- Rx Input NF: 12dB
- Rx SNR required: 12 dB
- Distance 200 nmi (370 km)
- Carrier frequency: 137 MHz
- Signal attenuation: 127dB
Link budget

Cascaded noise temperature: \(T_{\text{eq}} = T_1 + \frac{T}{G_1} + \frac{T_3}{G_1G_2} + \ldots + \frac{T_n}{G_1G_2\ldots G_{n-1}} \)

Cascaded noise factor: \(F_{\text{eq}} = F_1 + \frac{(F_2-1)}{G_1} + \frac{(F_3-1)}{G_1G_2} + \ldots + \frac{(F_n-1)}{G_1G_2\ldots G_{n-1}} \)

\[T_e = (10^{\frac{\text{NF}}{10}} - 1) \cdot T_0 \quad \text{NF = Noise figure, } T_0 = 290K, \quad T_e = \text{equivalent noise temp} \]

\[T_{\text{enr}} = (10^{\frac{\text{ENR}}{10}+1}) \cdot T_0 \]

Noise into RX antenna: Man-made + Sky temp: \(T_{\text{enr}} = 11835K, \quad T_{\text{sky}} = 1018K, \quad \text{Tot: } 12853K \Rightarrow 4064K \text{ at LNA} \)

LNA NF (12 dB) \(\Rightarrow T_{\text{eq}} = (10^{\frac{12}{10}-1}) \cdot 290 = 4306K \)

Total T at LNA: 4306+4064=8370K \(\Rightarrow F=30 \text{ (NF=15dB)} \)

\[\text{PA power: } 29+2+3=34\text{dBm (2.5W)} \]

\[\text{Transmitted power: } -98+127=29\text{dBm} \]

\[\text{Noise power at LNA = } -174+44+15= -115\text{dBm} \]

\[\text{Signal level at LNA: } -115+12= -103\text{dBm} \text{ for 12 dB SNR} \]

PA:
- \(G_t: -2 \text{ dB} \)
- \(A = -3 \text{ dB} \)

LNA:
- \(G_r: -2 \text{ dB} \)
- \(A = -3 \text{ dB} \)

Noise into RX antenna:
- \(T_{\text{enr}} = 11835K, \quad T_{\text{sky}} = 1018K, \quad \text{Tot: } 12853K \Rightarrow 4064K \text{ at LNA} \)

\[T_{\text{enr}} = \frac{T}{G_1} + \frac{T}{G_1G_2} + \ldots + \frac{T}{G_1G_2\ldots G_{n-1}} \]

\[T_{\text{eq}} = \left(10^{\frac{\text{NF}}{10}} - 1\right) \cdot T_0 \]

\[T_{\text{enr}} = \left(10^{\frac{\text{ENR}}{10}+1}\right) \cdot T_0 \]
Multi-access system FDMA

- Central coordination
- Analog systems
- POTS, FM-radio, VHF

Frequency

Time
Multi-access system “Aloha”

- No coordination
- Low channel utilization
- Mode-S, UAT
Multi-access system CSMA

- No central coordination
- Medium channel utilization

- Ethernet, VDL mode 2,3
Multi-access system TDMA

- Coordination of slots
- GSM, DECT...
- VDL4 (STDMA)
Multi-access system FH-CDMA

- Coordination by codes
- Bluetooth, Radio-LAN
- Military systems
Multi-access system DS-CDMA

- Users use different spreading sequences with low cross-correlation
- Coordination by codes
- IS-95 (US CDMA), GPS
Make it simple...