University of Southern California

Course Title: EE/CS 450 “Introduction to Computer Networks”

Semester: Fall Semester 2002

Lecture: TTH 7:30-8:50 AM, OHE 100, Studio D

Discussion Session: W 8:30-9:20 AM, Studio D

Instructor: Professor A. Zahid

Office: EEB 102

Office Phone: 740-2221 (during office hours only)

Voice Messages: (213) 382-7768 (any time)

E-mail: zahida54@yahoo.com, azahid@usc.edu

Office Hours: TTH 7:00-7:25 AM, 9:00-10:45 AM, 1:00-3:00 PM

Teaching Assistant: Mr. Karim Seada

T/A Office and Office Hours: W 10:00-12:00 PM, EEB201

Graders: Ms. Deniz Gurkan and Ms. Jieyu Zheng

Graders Office and Office Hours:
 Deniz: F 11:00-1:00 PM, EEB533
 Jieyu: M 3:30-5:30 PM, EEB201

Grading: Max \{(40, M), (50, F), (10, HW)\}, \{(30, M), (60, F), (10, HW)\}\)

Grading Scales: (85-100, A- to A), (70-84, B- to B+), (55-69, C- to C+), (45-54, D- to D+). **There is absolutely no curve**

Required Textbook: Computer Networks, A system approach, 2nd Edition
 Larry Peterson & Bruce Davie

Exams Dates: Midterm, Oct 17, 7:30 ~ 8:50 AM, Final, Dec 12, 4:30 ~ 6:30 PM
 No Make-up exams no matter what your reasons are.

Homeworks: Assigned weekly. No late or electronic Homeworks are accepted. Remote Location students should contact DEN for a fax number or e-mail address
“Course Syllabus”

PART 1: Fundamentals of Data Communications & Networking

• Definition and Modeling of a Data Communications System
• Motivation for Networking
• Evolution of Computer Networks
 * Dumb vs. Smart Terminals
 * Point-to-Point vs. Multipoint vs. Multiplexed Configurations
 * Master-Slave vs. Peer Networks
 * Centralized vs. Distributed Processing
 * The Public Internet
 * Enterprise Networks
• Classifications of Networks
 * Public vs. Private
 * Switched vs. Broadcast
 * Local vs. Wide Area Networks

PART 2: Computer Network Protocols

• Need for Protocols, Concept of Layered Architecture
 * Elements of Protocols
 * The Open System Interconnection Reference Model (OSIRM)
 * The Internet Protocol Suite (TCP/IP)
• Data Communications Physical Interface
 * Asynchronous vs. Synchronous Transmission
 * Digital vs. Analog Signaling
 * HDX vs. FDX Transmission
 * Multiplexing Techniques: Synchronous TDM, Statistical TDM
 * Bit Rate vs. Baud
 * Physical Interface Specifications
 * Transmission Media
• Data Link Control Protocols
 * Error Detection and Control Procedures
 a) Stop & Wait ARQ
 b) Continuous, Go-Back-N ARQ
 c) Selective ARQ
 d) Cyclic Redundancy Checks
 * Flow Control Procedures
 a) Stop & Wait Flow Control
 b) Sliding Window Flow Control
 * Data Link Protocols: HDLC, PPP, etc…
PART 3: WIDE AREA NETWORKS

• Switching Technologies
 * Circuit Switching
 * Packet Switching Technologies
 * Connectionless (Datagrams) Packet-Switched Networks
 * Connection-Oriented (Virtual Circuit) Packet-Switched Networks, X.25
 * Fast Packet Switching Technologies (Frame Relay, Asynchronous Transfer Mode)
 * The Public Internet Structure

PART 4: LOCAL AREA NETWORKS

• Introduction and Overview
 * Definition and Terminology
 * Characteristics of LANs
 * LAN Protocol Architecture

• LAN Technology Options
 * LAN Topologies: Bus, Ring, Hub, ...
 * LAN Transmission Media: STP/UTP, Coaxial Cable, Fiber-Optic Cable, ...
 * LAN Hardware Components: NICs, Hubs, MAUs, etc…

• LAN Medium Access Methods
 * Carrier Sense Multiple Access/Collision Detection
 * Token Passing Protocols: Token Ring, Token Bus, Slotted Rings
 * Performance Comparison of Media Access Protocols: Throughput vs. Delay

• Legacy LANs
 * IEEE 802.3: CSMA/CD (Ethernet)
 * IEEE 802.5: Token Ring
 * FDDI

• High Speed/switched LANs
 * 10BaseT
 * 100BT: Fast Ethernet
 * Priority Demand (IEEE802.12)
 * Gigabit Ethernet
 * Switched Rings
PART 5: INTERNETWORKING

• **MAC Layer Bridging**
 * Functional Definition and Architecture
 * Bridge Operation: Learning Process, Forwarding, Filtering & Flooding
 * Types of Bridges:
 a) Transparent Spanning Tree Bridges
 b) Source Routing Bridges
 c) Translation Bridges
 d) Encapsulating Bridges
 e) Backbone Bridges
 * Bridging Applications: Network Segmentation, WAN Connectivity, …

• **Network Layer Routing**
 * Functional Definition and Architecture
 * Survey of Routing Algorithms:
 a) Static and Dynamic Routing
 b) Centralized and Distributed Routing
 c) Least Cost Path
 d) Load Sharing
 * Routing with TCP/IP
 a) TCP/IP Protocol Overview
 b) IP Packet Structure
 c) IP Addressing, IP Subnetting, Subnet Masking, VLSM, CIDR
 d) Address Resolution Protocol
 * Internet Routing Protocols: RIP, OSPF, BGP

• **Transport layer Protocols**
 * Transmission Control Protocol (TCP)
 a) Connection establishment
 b) Socket Addressing, Port numbers
 c) Slow start characteristics, Global synchronization effects
 d) End-to-end sliding window procedures
 e) TCP segment format
 f) Congestion Control with TCP
 * User Datagram protocol (UDP)
 a) Connection-less Operation
 b) Socket Addressing, Port numbers
 c) UDP datagram format

• **Network Applications**
 * Client-Server Applications
 * Domain Name Services
 * Electronic Mail, File Transfer and Remote Access Applications
 * WWW-based Applications, HTTP, HTML