1. Cadence schematic

2.
 a)

\[V_{g} = 2.5 \text{V} \]
\[V_{i}n = 2.5 \text{V} \]
\[V_{o}u = 0 \text{V} \]

Assume \(V_{g} \) is 2.5V and \(V_{i}n \) is 2.5V. \(V_{o}u \) is 0V at \(t=0^+ \).
Initially the NMOS pass transistor is not subject to body effect since \(V_{s} = 0 \text{V} \). However, once \(V_{s} \) is no longer at 0V there is body effect on the NMOS.

\[@ t = 0 \]
\[V_{g}sn = 2.5 \text{V} > V_{tn} = 0.6 \text{V} \rightarrow \text{NMOS is on.} \]
\[V_{dsn} (= 2.5 \text{V}) > V_{g}sn - V_{tn} (=1.9 \text{V}) \rightarrow \text{NMOS is in saturation.} \]

\[@ t = \text{infinity} \]
\[V_{g} = 2.5 \text{V} \]
\[V_{i}n = 2.5 \text{V} \]
\[V_{o}u = 1.7 \text{V} \]

\(V_{s} \) is rising until \(V_{g}sn \) reaches \(V_{tn,be} (= 0.8 \text{V}) \)

\[@ t = \text{infinity} \]
\[V_{g}sn = V_{tn,be} = 0.8 \text{V} \rightarrow \text{NMOS is cutoff} \]
\[V_{o}u = V_{s} = 2.5 - 0.8 = 1.7 \text{V} < V_{i}n (=2.5 \text{V}) \]

Therefor, NMOS transfers a weak 1 because it’s cutoff when \(V_{g} < V_{tn} \).

b) We can observe from part a) body effect makes the 1 weaker (makes it worse to transfer a 1.)

3.

\[A(0,11) \]
\[B(0,7) \]
\[C(1,8) \]
\[D(8,12) \]
\[E(6,7) \]
\[F(6,7) \]
\[E(9,11) \]
4. The advantage of using material with a higher dielectric constant is that we can avoid gate leakage problem happened in thin gates. Gates use thicker dielectrics leak less.

5.
\[V_{dsn} = 0.2 \text{V}, \quad V_{gsn} = 1.7 \text{V}, \quad V_s = 0 \text{V} \text{ (no body effect,) } V_{tn} = 0.6 \text{V} \]
\[\beta_n = 219.4*(W/L) \]
\[V_{gsn} > V_{tn} \to \text{NMOS is on.} \]
\[V_{dsn} (=0.2\text{V}) < V_{gsn} - V_{tn} (=1.7\text{V} - 0.6\text{V}) \to \text{NMOS is in linear region of operation.} \]
\[I_{dsn} = (\beta_n/2)[2(V_{gsn} - V_{tn}) V_{dsn} - V_{dsn}^2] = (219.4/2)*(24/3)*(2*1.1*0.2 - 0.2^2) = 351.04 \mu\text{A/V}^2 \]

6.
\[V_{dsp} = -0.8 \text{V}, \quad V_{gsp} = -1.6 \text{V}, \quad V_s = 2.5 \text{V} \text{ (no body effect,) } V_{tp} = -0.6 \text{V} \]
\[|V_{gsp}| > |V_{tp}| \text{ (or } V_{gsp} < V_{tp}) \to \text{PMOS is on.} \]
\[|V_{dsp}| < |V_{gsp}| - |V_{tp}| \text{ (or } V_{dsp} > V_{gsp} - V_{tp}) \to \text{PMOS is in linear region of operation.} \]
\[R_{eff} = \frac{1}{\beta_p(|V_{gsp}| - |V_{tp}|)} = \frac{1}{51\frac{W}{L} (\mu\text{A/V}^2) \cdot 1(V)} = 10^6 \cdot \frac{L}{W} \text{ (} \Omega \text{)} \]

7. “C” point occurred at \(V_{in} = 0.95 \text{V} < V_{dd}/2 (=1.25 \text{V}) \) implies that the transfer curve shifts to the left which means \(|\beta_n| > 1 \text{ or } |\beta_p| < 1. \)

8.
Given \(V_{in} \), we know \(V_{gsn} \) & \(V_{gsp} \).
Given the sizes of the transistors, we know \(\beta_n \) & \(\beta_p \)
Given inverter is on segment B (NMOS is in saturation region and PMOS is in linear region,) we can set up the current equations for both transistors.
\[I_{dsp(lin)} = -(\beta_p/2)[2(V_{gsp} - V_{tp}) V_{dsp} - V_{dsp}^2] \]
\[I_{dsn(sat)} = (\beta_n/2)[(V_{gsn} - V_{tn})^2] \]
\[I_{dsp(lin)} = -I_{dsn(sat)} \to \text{Solve for } V_{dsp} \to V_{out} = V_{dd} + V_{dsp} \]