Perception of Metrical Structure: The Model

Christopher Lee
Presentation by Joann Emmanuel
March 25, 2004
ISE 599

The Model
- Algorithm can yield more than one interpretation of a sequence by changing the tolerance, C.
 - High C good for major syncopation and weak long notes
 - Low C only recognizes long weak notes without syncopation

The Model
- Model is conservative about where the downbeat falls
 - Assumed downbeat on first note
 - Shifted when presented with counter evidence
- Listener prefers no upbeat

The Model
- Model is capable of Metrical Subdivision
 - Ability to detect metrical levels lower than the one already established
 - Model considers effect of Tempo
Establishing Metrical Grouping

- Calculate \(t_1, t_2, \) and \(t_3 \) which mark the onset of three hypothetical units
 1. \(t_1 \) and \(t_2 \) placed on first two notes
 2. \(t_3 \) calculated such that \(t_3 - t_2 = t_2 - t_1 \)
 3. LEV scored based on quality of \(t_3 \) location
 4. If \(\text{LEV} \) > \(C \), \(t_1 \) and/or \(t_2 \) is altered

- Process repeated until satisfactory
- LEV stored added to global counter-evidence

Revision due to \(\text{LEV} > C \)

- Problem occurs on \(t_2 \)
 - UPDATE: Shift the downbeat (\(t_1 \)) to \(t_2 \).
 Recalculate \(t_3 \).
 - Problem is a long note between \(t_2 \) and \(t_3 \)
 - STRETCH: Move \(t_2 \) to the long note. Alter \(t_3 \).

Counter Evidence, LEV

- LEV for a weak long note is 1
 - Ex. Note on \(t_2 \) is longer than note on \(t_1 \)
- LEV for syncopation is 1
 - Ex. Syncopation within a measure
- Combination of both scores 2
- Syncopation over two measures scores 2

Metrical Subdivision

- Routines enable “full parsing” of a sequence
 - Once the high level metrical grouping is established, a search routine determines if notes occur between consecutive beats.
 - A meter-finding routine determines if these notes establish a meter (divide beat into 2 or 3)

- Repeat until no more notes, no more subdivisions
What factors determine subdivision?

- Previous locations of t2?
 - Beat length revision information
 - All but the last location cannot make up a subdivision
- Lee says, This is no good

Why rule is no good

1. Possible that beat revision does not occur. It cannot guide the subdivision process
 - Incorporate supplementary rules (next slide)
2. Supplementary rules don’t make accepted interpretation better than eliminated interpretation
 - All subdivisions must satisfy supplementary rules and main rules
3. Subdivision sensitivity to preset values of C

Supplementary Rules

- A subdivision is eliminated if no note-onset occurs at the beginning of any of the lower-level units
- If both possible subdivisions are thereby eliminated, the process of subdivision is abandoned
- If neither subdivision is eliminated in this way, the binary subdivision is chosen

Tempo Effects

- Tactus?
 - Moderate-tempo pulse in most rhythmic music
 - Range of spontaneous tempo (clapping a steady beat, walking pace, heart beat)
Effect of Tempo

- Algorithm doesn’t work in real time, rather sets the shortest note in the sequence to have a duration of 125ms
- Two ways tempo effects a listener's choice of interpretation
 - Revise metrical grouping to obtain a tactus within a preferred range
 - Cut off point of where no change in meter can occur

Selecting a Tactus

- Algorithm ensures that at least one metrical level provides a suitable tactus
 - If a metrical level has an acceptable tactus, a test routine checks if a different grouping provides a better tactus
 - Revision attempted when...

Revising a Tactus

- Occurs when
 - Two or more levels of grouping have been established
 - New shortest note is shorter than the old shortest note
 - New unit is longer than a preset longest length
- Revision
 - Sets the provisional beat to 4
 - Checks if a revision needs to occur (return to top of slide)

Tactus revision termination

- Algorithm stops looking for high-level grouping when
 - High established unit is longer than longest acceptable
 - At least one lower level grouping has been established
Model Overview

- Model works from left to right
 - Compares consecutive note lengths
 - Considers position with respect to beats
 - Yields a metrical interpretation
- Model can alter the metrical hypothesis
 - Revise position of downbeat
 - Revise length of beat

Only occurs with presence of sufficient counter evidence

Model Overview

- Model is more conservative than previous model
 - Preset tolerance, C
 - Ability to yield different interpretations of a sequence
 - Capable of providing metrical subdivisions
 - Sensitive to tempo effects
 - Try to obtain a tactus within a specified range

Problem – Subdivision

- Algorithm unable to detect lower level grouping that occurs later in the sequence that don’t follow a 2:1 ratio
- Is a subdivision of 3:1 equally perceivable as 2:1?
 - Yes, if set after a strong metric context

Solution – Subdivision

- Use “longnote” routine from Longuet-Higgins and Lee (1982)
 - Need to find a better method rather than a additionally constrain current method
Limitations

- Evaluation Routine
 - Possible to produce poor interpretation
 - Solution: Routine should have a broader scope beyond focusing solely on local information
- Revision Routine
 - Program gives up when no division can be found
 - When listener encounters this problem, he generates a new interpretation from scratch and tries again

Revision – Parallelism

- Model cannot recover from failure to parse a sequence
 - Aborted parsing should automatically attempt again at a lower value of C, or a higher value of C
- Humans perceive things in parallel, not series
 - Algorithm should perform routines in parallel
 - Concurrently observe a range of C to collect many interpretations
 - Use set C to determine which interpretation is best

Revision – Questions

- At what point does the listener abandon a non-preferred interpretation?
 - Gating paradigm
- How much parallelism should be used?
- How is meter perceived?