Introduction

- Authors
- Voice Separation for Computer based Transcription of music
- Stochastic Local search method
- Differs by Allowing chords in individual voices
- Controlled by parameters
- Interactive optimization (real time)
- Goal—to create an algorithm to find a range of voice separations

Existing Approaches

- Split Point Separation
- Rule Based Approaches

Preliminaries

- Assumptions —list of notes sorted by time positions of their respective onset times
- Feature Vector $m_i=(a_i,d_i,p_i,v_i,c_i,offset(m_i))$
- $\text{Onset}(m_{ip})<\text{Onset}(m_{iq})$
- $\text{Onset}(m_{ip})=\text{Onset}(m_{iq})$
- $\text{Overlap}(m_{ip},m_{iq})$
- Partition input note M into slices
Algorithm

- Given i/p pieces M from locally optimized separations for slices of M
- Local optimization based on C which assesses the quality of Si
- Given i/p piece M and max no of voices nVoices
- Segment M into slices $y_1, y_2, ..., y_n$
- Cost Optimized voice separation for the first slice y_1 is computed
- Iteratively extend this till y_n when Complete voice separation for M is reached
- Problematic for unquantified i/p data (resolved by adjusting durations or onset times)

Cost Function

Used for assessing and optimizing the quality of voice separation S_i of a slice y_i given previous slices is a weighted sum of terms that penalizes individual, undesirable features

$$C(S_i, S) = P_{pitch} C_{pitch}(S_i, S) + P_{gap} C_{gap}(S_i, S) + P_{chord} C_{chord}(S_i) + P_{ovl} C_{ovl}(S_i, S)$$

Where S denotes partial voice separation

- C_{pitch} penalize large pitch intervals, gaps between successive notes in a voice
- C_{chord} penalizes chords with large pitch intervals between highest and lowest note, as well as irregular notes containing notes with different onset times and durations
- C_{ovl} penalizes overlaps between successive notes in the same voice

Penalty terms

- Pitch Distances Penalty C_{pitch}
- Gap Distance Penalty C_{gap}
- Chord Distance Penalty C_{chord}
- Overlap Distance Penalty C_{ovl}

Cost Optimized Slice Separation

- Based on Cost function C and separation of slices $y_1, ..., y_n$. A stochastic local search approach for finding cost optimized voice separation S_i for y_i
- Series of randomized iterative improvement steps starting with $S_i := S_i^0$ is performed during which each of which one note is assigned to reassigned to a different voice
- When assigned with lower cost than the best assignment, the current assignment and cost are memorized
- Terminated when no improvement can be achieved for a no of steps
- Initial separation S_i^0 for slice y_i is obtained by assigning all notes of y_i to the first voice. Notes with equal onset times are combined as chords or distributes all notes in y_i into voices. Better results were obtained for the former case
- Two separations S_i and S_i' are neighbors if both are valid separations of y_i that differ in voice or chord assignment of exactly one note in y_i
- Selection of actual search step is performed randomly with probability, neighboring selection with minimal cost is selected, otherwise a neighbor is uniformly at random
- The stochastic local search in this case finds close to optimal separations
Implementation
- Implemented in the current version of midi2gmn
- MIDI file is given as i/p
- i/p data is quantized or unquantized
- Parameters set in initialization file (fermata.ini)

Results
- Tested on different kinds of music
- Highly dependent on parameters
- Inaccurate results in some cases

Conclusion
- Differs by detecting chords
- Different type of voice separations based on parameters
- Applied both quantized/unquantized input

Future Work
- Improved by fine tuning cost function
- GUI, Individual parameter setting

Thank You