Problem 1.4

Consider the circuit of Fig. P1.4.

(a) Determine \(v_{\text{out}} \) and node voltage \(V_z \).
(b) What is the apparent circuit function?
(c) What circuit modifications (if any) lead to a better design?

\[
V_X = 5 + 5 = 10
\]

b) unity-gain buffer, \(v_{\text{out}} = v_{\text{in}} \)
no current drawn from input source

c) Eliminate \(r_1 \) and \(r_2 \) \(\rightarrow \) shorts
Problem 1.8

Determine node voltages V_a and V_b in the circuit of Fig. P1.8.

![Circuit Diagram]

$V_b = 12$

$\frac{1}{12} \left(\frac{1k}{1k + 2k} \right) = 4$

non-inverting amplifier

$Gain = \left(1 + \frac{2k}{1k} \right) = 3$
Problem 1.20

Consider the circuit of Fig. P1.20.
(a) Determine node voltages v_a and v_b in terms of node voltage v_x.
(b) Determine voltage v' and the output current i_{out}.
(c) Show the separate consequences of mismatched R_1 and R_2 resistors.

\[i_{out} = \frac{-bu_i}{(1-a)(R + R_3)} \]

\[i_{out} = v' \]

\[v' = v_x - v'_x = -v_i \]

\[v = a_v x - b v_i \]

\[a \neq 1, \ b \neq 1 \]