It is often desirable to implement bandpass filters that are easily tuned and contain no inductors. The attached 3-op-amp circuit meets both objectives.

The bandpass center frequency is

$$f_0 = \frac{1}{2\pi R_1 C},$$

the gain at the center frequency is

$$K = \frac{R_2}{R_3},$$

and the quality factor is

$$Q = \frac{R_2}{R_1}.$$

The filter bandwidth $2\pi f_0/Q$ is the frequency difference between the -3 dB points on either side of the bandpass center frequency.
1. Build the filter circuit (see attached data sheet for a quad op-amp IC). Use 20-K potentiometers for R_1.

2. Adjust the R_1 potentiometers to "tune" the bandpass filter to a 1-kHz center frequency.

3. Measure the -3 dB points in relation to this frequency, then determine the filter bandwidth.

4. Measure the output phase shift at the center frequency and -3 dB points.

5. If you have time, use the circuit to filter some music taken from the PC. You may want to adjust the center frequency.

In your lab report ...

Show that the filter transfer characteristic has the form

$$H(s) = \frac{v_{out}}{v_{in}} = \frac{K \omega_0/Q}{s^2 + \omega_0/Q + \omega_0^2},$$

where $\omega_0 = 2\pi f_o$ and $s = j\omega$.

Then verify the expressions for f_o, K, and Q.

Briefly state the results of your lab measurements.
LM124/LM224/LM324/LM2902
Low Power Quad Operational Amplifiers

General Description
The LM124 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM124 series can be directly operated off of the standard +5V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional ±15V power supplies.

Unique Characteristics
- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage
- The unity gain cross frequency is temperature compensated
- The input bias current is also temperature compensated

Advantages
- Eliminates need for dual supplies
- Four internally compensated op amps in a single package
- Allows directly sensing near GND and V_OUT also goes to GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features
- Internally frequency compensated for unity gain
- Large DC voltage gain 100 dB
- Wide bandwidth (unity gain) 1 MHz (temperature compensated)
- Wide power supply range:
 Single supply 3V to 32V
 or dual supplies ±1.5V to ±16V
- Very low supply current drain (700 µA)—essentially independent of supply voltage
- Low input biasing current 45 nA (temperature compensated)
- Low input offset voltage 2 mV and offset current: 5 nA
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0V to V^+ – 1.5V

Connection Diagram

Dual-In-Line Package

Top View

See NS Package Number J14A, M14A or N14A

Note 1: LM124A available per JM38510/11006
Note 2: LM124 available per JM38510/11005
Connection Diagram (Continued)

Note 3: See STD Mil DWG 5962R99504 for Radiation Tolerant Device

LM124AWRQL and LM124AWRQLV (Note 3)
See NS Package Number W14B
LM124AWGRQL and LM124AWGRQLV (Note 3)
See NS Package Number WG14A

Schematic Diagram (Each Amplifier)
Absolute Maximum Ratings (Note 12)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM124/324</th>
<th>LM124A/324A</th>
<th>LM2902</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
</tr>
<tr>
<td>Supply Voltage, (V^+)</td>
<td>32V</td>
<td>32V</td>
<td></td>
<td>26V</td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>32V</td>
<td></td>
<td></td>
<td>26V</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>(-0.3V) to +32V</td>
<td>(-0.3V) to +26V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Current</td>
<td>(V_{IN} < -0.3V) (Note 6)</td>
<td>50 mA</td>
<td>50 mA</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation (Note 4)</td>
<td>Molded DIP</td>
<td>1130 mW</td>
<td>1130 mW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cavity DIP</td>
<td>1260 mW</td>
<td>1260 mW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small Outline Package</td>
<td>800 mW</td>
<td>800 mW</td>
<td></td>
</tr>
<tr>
<td>Output Short-Circuit to GND</td>
<td>(V^+ \leq 15V) and (T_A = 25^\circ C)</td>
<td>Continuous</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>LM324/LM324A</td>
<td>0°C to +70°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LM224/LM224A</td>
<td>-25°C to +85°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LM124/LM124A</td>
<td>-55°C to +125°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>(-65^\circ C) to +150°C</td>
<td>(-65^\circ C) to +150°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 10 seconds)</td>
<td>260°C</td>
<td>260°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soldering Information</td>
<td>Dual-In-Line Package</td>
<td>260°C</td>
<td>260°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small Outline Package</td>
<td>260°C</td>
<td>260°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vapor Phase (60 seconds)</td>
<td>215°C</td>
<td>215°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infrared (15 seconds)</td>
<td>220°C</td>
<td>220°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD Tolerance (Note 13)</td>
<td>250V</td>
<td>250V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrical Characteristics

\(V^+ = +5.0V \), (Note 7), unless otherwise stated

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM124A</th>
<th>LM224A</th>
<th>LM324A</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>((Note 8)), (T_A = 25^\circ C)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>(\left</td>
<td>I_{IN(+)} \right</td>
<td>= \left</td>
<td>I_{IN(-)} \right</td>
<td>), (V_{CM} = 0V), (T_A = 25^\circ C)</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>(\left</td>
<td>I_{IN(+)} \right</td>
<td>= \left</td>
<td>I_{IN(-)} \right</td>
<td>), (V_{CM} = 0V), (T_A = 25^\circ C)</td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range</td>
<td>(V^+ = 30V), (LM2902, (V^+ = 26V)), (T_A = 25^\circ C)</td>
<td>0</td>
<td>(V^+ - 1.5)</td>
<td>0</td>
<td>(V^+ - 1.5)</td>
</tr>
<tr>
<td>Supply Current</td>
<td>Over Full Temperature Range (R_L) = (\infty) Op Amps</td>
<td>1.5</td>
<td>3</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(V^+ = 30V) (LM2902 (V^+ = 26V)) (V^+ = 5V)</td>
<td>0.7</td>
<td>1.2</td>
<td>0.7</td>
<td>1.2</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>(V^+ = 15V), (R_L \geq 2k\Omega), ((V_O = 1V) to 11V), (T_A = 25^\circ C)</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>DC, (V_{CM} = 0V) to (V^+ - 1.5V), (T_A = 25^\circ C)</td>
<td>70</td>
<td>85</td>
<td>70</td>
<td>85</td>
</tr>
</tbody>
</table>
Electrical Characteristics

V^+ = +5.0V, (Note 7), unless otherwise stated

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM124A</th>
<th>LM224A</th>
<th>LM324A</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>V^+ = 5V to 30V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rejection Ratio</td>
<td>(LM2902, V^+ = 5V to 26V), T_A = 25°C</td>
<td>65</td>
<td>100</td>
<td>65</td>
<td>100</td>
</tr>
<tr>
<td>Amplifier-to-Amplifier Coupling</td>
<td>f = 1 kHz to 20 kHz, T_A = 25°C</td>
<td>-120</td>
<td>-120</td>
<td>-120</td>
<td>dB</td>
</tr>
<tr>
<td>Output Current Source</td>
<td>V_{IN}^+ = V_{IN}^-, V_{IN}^- = 0V, V^+ = 15V, V_O = 2V, T_A = 25°C</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Sink</td>
<td>V_{IN}^+ = V_{IN}^-, V_{IN}^- = 0V, V^+ = 15V, V_O = 2V, T_A = 25°C</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>T_A = 25°C</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>mA</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I_{IN}(+) or I_{IN}(-), V_{CM} = 0V, T_A = 25°C</td>
<td>45</td>
<td>150</td>
<td>45</td>
<td>250</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>I_{IN}(+) or I_{IN}(-), V_{CM} = 0V, T_A = 25°C</td>
<td>4</td>
<td>30</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range</td>
<td>(Note 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Gain</td>
<td>R_L ≥ 2kΩ</td>
<td>25</td>
<td>50</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OH}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Current Source</td>
<td>V_{O} = 2V</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Sink</td>
<td>V_{IN}^+ = +1V, V_{IN}^- = 0V, V^+ = 15V</td>
<td>10</td>
<td>15</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM124/LM224</th>
<th>LM324</th>
<th>LM2902</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>(Note 8) T_A = 25°C</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I_{IN}(+) or I_{IN}(-), V_{CM} = 0V, T_A = 25°C</td>
<td>45</td>
<td>150</td>
<td>45</td>
<td>250</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>I_{IN}(+) or I_{IN}(-), V_{CM} = 0V, T_A = 25°C</td>
<td>3</td>
<td>30</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range</td>
<td>(Note 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Gain</td>
<td>Over Full Temperature Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>R_L = 2kΩ, V^+ = 30V, (LM2902 V^+ = 26V)</td>
<td>1.5</td>
<td>3</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>DC, V_{CM} = 0V to V^+ = 1.5V, T_A = 25°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>V^+ = 5V to 30V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(LM2902, V^+ = 5V to 26V),</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Electrical Characteristics

V* = +5.0V, (Note 7), unless otherwise stated

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM124/LM224</th>
<th>LM324</th>
<th>LM2902</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifier-to-Amplifier Coupling (Note 11)</td>
<td>f = 1 kHz to 20 kHz, T_A = 25˚C (Input Referred)</td>
<td>−120</td>
<td>−120</td>
<td>−120</td>
<td>dB</td>
</tr>
<tr>
<td>Output Current</td>
<td>Source</td>
<td>V_{IN} = 1V, V_{OUT} = 0V, V* = 15V, T_A = 25˚C</td>
<td>20</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Sink</td>
<td>V_{IN} = 1V, V_{OUT} = 0V, V* = 15V, T_A = 25˚C</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>V_{IN} = 0V, V* = 15V, T_A = 25˚C</td>
<td>12</td>
<td>50</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>Short Circuit to Ground (Note 5)</td>
<td></td>
<td>V* = 15V, T_A = 25˚C</td>
<td>40</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td></td>
<td>(Note 8)</td>
<td>7</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>V_{OS} Drift</td>
<td>R_S = 0Ω</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>I_{IN(+)} - I_{IN(−)}, V_{CM} = 0V</td>
<td>100</td>
<td>150</td>
<td>45</td>
<td>200</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I_{OS}</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>pA/C</td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range (Note 10)</td>
<td>V* + 30V (LM2902, V* = 26V)</td>
<td>0</td>
<td>V*−2</td>
<td>0</td>
<td>V*−2</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>V* = +15V (V_O Swing = 1V to 11V)</td>
<td>25</td>
<td>15</td>
<td>15</td>
<td>V/mV</td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>V_{CH}</td>
<td>V* = 30V (LM2902, V* = 26V)</td>
<td>R_L = 2 kΩ</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_L = 10 kΩ</td>
<td>27</td>
<td>27</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>V^* = 5V, R_L = 10 kΩ</td>
<td>5</td>
<td>5</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Output Current</td>
<td>Source</td>
<td>V_O = 2V</td>
<td>V_{IN} = +1V, V* = 15V</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Sink</td>
<td>V_{IN} = +1V, V* = 15V</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Note 4: For operating at high temperatures, the LM324/LM324A/LM2902 must be derated based on a +125˚C maximum junction temperature and a thermal resistance of 88˚C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM224/LM224A and LM124/LM124A can be derated based on a +150˚C maximum junction temperature. The dissipation is the total of all four amplifiers—use external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.

Note 5: Short circuits from the output to V* can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA independent of the magnitude of V*. At values of supply voltage in excess of +15V, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

Note 6: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V* voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than −0.3V (at 25˚C).

Note 7: These specifications are limited to −55˚C ≤ T_A ≤ +125˚C for the LM124/LM124A. With the LM224/LM224A, all temperature specifications are limited to −25˚C ≤ T_A ≤ +85˚C, the LM324/LM324A temperature specifications are limited to 0˚C ≤ T_A ≤ +70˚C, and the LM2902 specifications are limited to −40˚C ≤ T_A ≤ +85˚C.

Note 8: V_O = 1.4V, R_S = 0Ω with V* from 5V to 30V, and over the full input common-mode range (0V to V* = 1.5V) for LM2902, V* from 5V to 26V.

Note 9: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.

Note 10: The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V (at 25˚C). The upper end of the common-mode voltage range is V* = 1.5V (at 25˚C), but either or both inputs can go to +32V without damage (+26V for LM2902), independent of the magnitude of V*.

Note 11: Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.

Note 12: Refer to RETS124AX for LM124A military specifications and refer to RETS124X for LM124 military specifications.

Note 13: Human body model, 1.5 kΩ in series with 100 pF.
Typical Performance Characteristics

Input Voltage Range

Input Current

Supply Current

Voltage Gain

Open Loop Frequency Response

Common Mode Rejection Ratio
Typical Performance Characteristics (Continued)

Voltage Follower Pulse Response

Output Characteristics
Current Sourcing

Current Limiting

Large Signal Frequency Response

Output Characteristics
Current Sinking
Application Hints

The LM124 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of 0 VDC. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At 25°C amplifier operation is possible down to a minimum supply voltage of 2.3 VDC.

The pinouts of the package have been designed to simplify PC board layouts. Inverting inputs are adjacent to outputs for all of the amplifiers and the outputs have also been placed at the corners of the package (pins 1, 7, 8, and 14).

Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V+ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than −0.3 VDC (at 25°C). An input clamp diode with a resistor to the IC input terminal can be used.

To reduce the power supply drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.

For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion.

Where the load is directly coupled, as in dc applications, there is no crossover distortion.

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.

The bias network of the LM124 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 3 VDC to 30 VDC.

Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at 25°C provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp.

The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of V+ /2) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.
Typical Single-Supply Applications \((V^+ = 5.0 \, V_{DC})\)

Non-Inverting DC Gain (0V Input = 0V Output)

*\(R \) not needed due to temperature independent \(I_{IN} \)

DC Summing Amplifier
\((V_{IN's} \geq 0 \, V_{DC} \) and \(V_O \geq V_{DC} \))

\[V_0 = V_1 + V_2 - V_3 - V_4 \]
\((V_1 + V_2) \geq (V_3 + V_4) \) to keep \(V_O > 0 \, V_{DC} \)

Power Amplifier

\[V_0 = 0 \, V_{DC} \] for \(V_{IN} = 0 \, V_{DC} \)
\[A_V = 10 \]
Typical Single-Supply Applications \((V^+ = 5.0 \text{ V}_{DC}) \) (Continued)

LED Driver

“BI-QUAD” RC Active Bandpass Filter

\[
\begin{align*}
V_+ & \quad R_1 \quad 100k \\
+ & \quad R_2 \quad 10k \\
+ & \quad R_3 \quad 100k \\
+ & \quad C_1 \quad 330 \text{ pf} \\
+ & \quad R_4 \quad 10M \\
+ & \quad C_2 \quad 330 \text{ pf} \\
+ & \quad R_5 \quad 670k \\
+ & \quad R_7 \quad 100k \\
+ & \quad V_+ \\
\end{align*}
\]

- \(f_0 = 1 \text{ kHz} \)
- \(Q = 50 \)
- \(A_V = 100 \text{ (40 dB)} \)

Fixed Current Sources

Lamp Driver

\[
I_2 = \left(\frac{R_1}{R_2} \right) I_1
\]
Typical Single-Supply Applications \((V^+ = 5.0 \ V_{DC}) \) (Continued)

Current Monitor

\[V_O = \frac{1V(I_L)}{1A} \]

\[V_L \leq V^+ - 2V \]

(Increase R1 for \(I_L \) small)

Driving TTL

\[1/4 \text{ LM124A} \]

\[1/4 \text{ DM54XX} \]

\[R_L = 240 \]

Voltage Follower

\[1/4 \text{ LM124A} \]

\[+V_{IN} \]

Pulse Generator

\[1/4 \text{ LM124A} \]

\[R1 = 1M \]

\[R2 = 100k \]

\[IN914 \]

\[R3 = 100k \]

\[R4 = 100k \]

\[R5 = 100k \]
Typical Single-Supply Applications \((V^+ = 5.0 \ V_{DC}) \) (Continued)

Squarewave Oscillator

\[
\begin{align*}
&\text{R1} = 100k \\
&\text{R2} = 100k \\
&\text{R3} = 100k \\
&\text{R4} = 100k \\
&\text{R5} = 100k \\
&\text{C} = 0.001\mu F
\end{align*}
\]

Pulse Generator

\[
\begin{align*}
&\text{R1} = 30k \\
&\text{R2} = 150k \\
&\text{R3} = 100k \\
&\text{R4} = 100k \\
&\text{C} = 0.01\mu F
\end{align*}
\]

High Compliance Current Sink

\[
\begin{align*}
&\text{I}_O = 1 \ \text{amp/volt } V_{IN} \\
&\text{(Increase } R_E \text{ for } I_o \text{ small)}
\end{align*}
\]
Typical Single-Supply Applications \((V^+ = 5.0 \text{ V}_{\text{DC}}) \) (Continued)

Low Drift Peak Detector

Comparator with Hysteresis

Ground Referencing a Differential Input Signal

\(V_O = V_R \)
Typical Single-Supply Applications\((V^+ = 5.0\ V_{DC}) \) (Continued)

Voltage Controlled Oscillator Circuit

*Wide control voltage range: \(0\ V_{DC} \leq V_C \leq 2(V^+ - 1.5\ V_{DC}) \)

Photovoltaic-Cell Amplifier

\(A_U = \frac{R_L}{R_1} \) (As shown, \(A_U = 10 \))
Typical Single-Supply Applications \((V^+ = 5.0 \text{ V}_{\text{DC}})\) (Continued)

AC Coupled Non-Inverting Amplifier

\[
A_V = 1 + \frac{R_2}{R_1}
\]

\[A_V = 11 \text{ (As shown)}\]

\[
\frac{i_0}{i_{\text{in}}} = 1 \text{ kHz}
\]

\[Q = 1\]

\[A_V = 2\]
Typical Single-Supply Applications \((V^+ = 5.0 \text{ V}_{\text{DC}}) \) (Continued)

High Input Z, DC Differential Amplifier

\[
V_O = 1 + \frac{R_4}{R_3} (V_2 - V_1)
\]

As shown: \(V_O = 2(V_2 - V_1) \)

High Input Z Adjustable-Gain DC Instrumentation Amplifier

\[
V_O = 1 + \frac{2R_1}{R_2} (V_2 - V_1)
\]

As shown: \(V_O = 101(V_2 - V_1) \)
Typical Single-Supply Applications \((V^+ = 5.0 \, V_{DC}) \) (Continued)

Using Symmetrical Amplifiers to Reduce Input Current (General Concept)

Bridge Current Amplifier

For \(\delta << 1 \) and \(R_i >> R \)

\[
V_O = V_{REF} \left(\frac{\delta}{2} \right) \frac{R_i}{R}
\]

Bandpass Active Filter

\(f_0 = 1 \, kHz \)

\(Q = 25 \)
Physical Dimensions inches (millimeters) unless otherwise noted

Ceramic Dual-In-Line Package (J)
NS Package Number J14A

MX S.O. Package (M)
Order Number LM324M, LM324MX, LM324AM, LM324AMX, LM2902M or LM2902MX
NS Package Number M14A
LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

14-Pin TSSOP
Order Number LM324MT or LM324MTX
NS Package Number MTC14