EE681 Course
Computer-Aided Design of Integrated Systems II

Instructor: Peter A. Beerel
Coordinates: EEB 350, x0-4481
pabeerel@eiger.usc.edu

http://www-classes.usc.edu/engr/ee-s/681b/ee681.html
What Is EE681 About?

Algorithms and tools to aid the analysis and design of VLSI circuits and systems

Required functionality may be described behaviorally as an algorithm

- Greatest common divisor or MPEG encoder/decoder described in C

VLSI circuit may be described structurally as a hierarchical interconnection of modules

- Interconnection of datapaths, registers, FSMs, control logic, buses, etc.
Compute the greatest common divisor of numbers \(x \) and \(y \)

```
while ( x != y ) {
    if ( x > y )
        x = x - y ;
    else
        y = y - x ;
}
gcd = x ;
```
HDL Specification

Interface is specified in VHDL

entity GCD is
 port(
 xi, yi : in BIT_VECTOR(1 to SIZE);
gcd : out BIT_VECTOR(1 to SIZE);
x, y : buffer BIT_VECTOR(1 to SIZE);
rst : buffer BIT;
);
end VHDL;
architecture GCD_BEHAVIOR of GCD is
begin
 process begin
 variable gtr, equ : BIT ;
 wait until CLOCK'event and CLOCK = ‘1’ ;
 if (rst = ‘1’) then
 x <= xi ; y <= yi ; rst <= 0 ;
 else
 gtr := x > y ;
 if (gtr = ‘1’) then
 x <= x - y ;
 else
 equ := x = y ;
 if (equ = ‘1’) then
 gcd <= x ; rst <= ‘1’ ;
 else
 y <= y - x ;
 end if ;
 end if ;
 end if ;
 end process ;
end VHDL_1 ;
Logic-Level Circuit
Gate-Level Circuit

![Diagram of a gate-level circuit](image)
Transistor and Layout Levels
Why CAD?

CAD tools are an enabling technology

– Have raised the abstraction level of design entry. From “rectangle pushing” to “schematic editing” to “program writing”

CAD tools have

– Significantly reduced design turnaround time
– Helped to manage design complexity
– Allowed design space exploration
– Helped to improve design characteristics
Aspects to VLSI CAD

Simulation: Analyze a design at different levels of abstraction, e.g., device-level, logic-level, behavioral-level.

Synthesis: Translate design from higher (e.g., algorithmic) to lower (e.g., logic) level of abstraction.

Verification: Ensure that the design is functionally correct and meets timing requirements.

Testing: Once design has been fabricated on integrated circuit, generate tests that will check correctness of fabricated circuit.
Synthesis

Involves taking an architectural specification and producing a VLSI circuit layout that

– Satisfies area, timing, and power dissipation specs
– Is the smallest or fastest or most power efficient

Many, many alternatives in design synthesis

– Need to be able to make correct choices by systematically exploring design space
– Getting a design is easy, obtaining a feasible design or the “best” design is very difficult
Verify that the VLSI circuit layout correctly implements the specified functionality.

if (a = ‘1’)
 b := ‘0’ ;
else
 b := ‘1’ ;
Test Generation

Check that the fabricated circuit implements the logical functionality by generating and applying a set of test vectors

Defect (misaligned gate) impairs logic functionality
Aspects of EE681

- Boolean algebra
- Logic synthesis
- Combinatorial optimization
- Automata theory
- Computer Architecture
- Architectural synthesis
- Compiler optimization
- Verification and Test
- Graph theory
Typical Assignment:

- You will be given a CAD algorithm implemented in a C software package, with input-output and algorithm structure well-defined.
- Modify the core of the algorithm (usually selection heuristics) to improve the results on given set of benchmarks.
- Expect to write no more than ~500 lines of C code.