Read: H & L chapter 4.6-4.7 (up to p.159), 5.1

Review:

Variations in Model Forms:
Constraints to be satisfied at equality (artificial-variable).
Negative RHS.
Constraints with opposite inequality signs.
Minimization problems.

Radiation Therapy Example:
The Big-M method.

Radiation Therapy Example (continued):
Tracking the solutions for the Big-M method...
Two-Phase Simplex Method:

Initialization: Revise constraints of original problem to obtain an obvious BFS for the *artificial problem*.

Phase I: Find a BFS for the *real problem* by minimizing the sum of the artificial variables.

Phase II: Find an *optimal solution* for the real problem.
How can you tell if the real problem has no feasible solutions?

How can we model variables that are allowed to be negative?

CASE 1: Variables will a lower bound.

CASE 2: Variables with no lower bounds.
Post-optimality Analysis:

- Re-optimization
- Shadow Prices
- Sensitivity Analysis
Introduction to the Foundations of the Simplex Method:

Definitions:
- Constraint Boundary Equation
- Hyperplane
- Boundary
- Corner-Point Feasible Solution
- Edges
- Adjacent CPF Solutions

Properties of CPF Solutions:

Property 1:
(a) If there is exactly 1 optimal solution, it must be a CPFS.
(b) If there are multiple opt solns (and a bounded feasible region), \(\geq 2 \) must be adjacent CPFS.

Property 2: There are a finite number of CPFS.

Property 3: If a CPFS has no adjacent CPFS that are better, then such a CPFS is guaranteed to be an optimal solution.

In the Augmented Form:

Properties also hold for BFS.

Each BFS has \(m \) basic variables, and the rest are nonbasic.
The number of nonbasic variables equals \(n + \# \text{ surplus variables} \).
The basic solution is the augmented CPS whose \(n \) defining equations are indicated by the nonbasic variables.

A BFS is a basic solution where all \(m \) basic variables are nonnegative. A BFS is said to be degenerate if any of the \(m \) variables equals zero.

An adjacent CPF solution is reached by
(1) deleting one constraint boundary from the \(n \) defining boundaries
(2) moving along the edge defined by the remaining \(n - 1 \) boundaries
(3) stopping when the first new boundary is reached.
| Homework 3: | 4.6-2 (a) through (g), 4.6-5, 4.6-15, 5.1-4, 5.1-13 | Due in class | September 24, 2002 |