Midterm

21 October 2003

1 hour 15 minutes

(7 pages)

<table>
<thead>
<tr>
<th>Question</th>
<th>Total</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>(e)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>(h)</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 (+2.5)</td>
</tr>
</tbody>
</table>

Hagrid: "What's comin' will come, an' we'll meet it when it does."

Here it is, the midterm. Good luck! ~ E.C.

Name: ___
Rewnar Sisters is a major movie production company that needs a combination of storage and office space for its various filming projects, including a high profile series on a trio of young magical folk.

Pauline is in charge of making the decisions on the amount of storage space (x_1) and office space (x_2) to rent for the year. She has to solve the following linear program to determine the optimum values for x_1 and x_2:

Minimize $W = 100x_1 + 300x_2$

s.t. $x_1 + x_2 \geq 10$

$x_1 + 2x_2 \geq 15$

$6x_1 + x_2 \geq 18$

$x_1 - x_2 \leq 10$

$x_1 \geq 0, x_2 \geq 0$
(a) Solve the problem geometrically to show that W is minimized when $x_1 = 11.33$ and $x_2 = 1.67$.
[15 points]

(b) Identify the optimal basic feasible solution and its defining equations.
[10 points]
(c) Standardize the constraints and construct the dual problem. [15 points]

(d) Use part (b) to help you determine the optimal basic feasible solution for the dual problem. [10 points]
(e) Construct the final tableaux of the dual problem. [20 points]
(f) Suppose the first constraint becomes

\[x_1 + x_2 \geq 10 + q \]

What is the allowable range of \(q \) for the solution in (e) to stay feasible and/or optimal? Please provide the geometrical interpretation of the allowable change to stay feasible/optimal using Pauline’s original problem.

[20 points]
(g) Suppose a new constraint is introduced in the original problem.

\[x_2 \leq l \]

For what values of \(l \) would the current optimal solution stay feasible and optimal?

[10 points]

(h) What is an anagram? Please give an example.

[2.5 points]